The Phantom of Differential Characteristics

Yunwen Liu

joint work with Bing Sun, Guoqiang Liu, Chao Li and Shaojing Fu

ESAT/COSIC, KU Leuven, and imec, Belgium National University of Defense Technology, China

ASK, December 2017

DISTINGUISHER +

Distinguisher + Attack

Distinguisher + Attack

For various application scenarios, we often assume the ability of an attacker to control the keys:

Distinguisher + Attack

For various application scenarios, we often assume the ability of an attacker to control the keys:

Single-key model

Distinguisher + Attack

For various application scenarios, we often assume the ability of an attacker to control the keys:

- Single-key model
- Open-key model

Distinguisher + Attack

For various application scenarios, we often assume the ability of an attacker to control the keys:

- Single-key model
- Open-key model
 - related-key attack
 - weak-key attack
 - known-key attack

Differential cryptanalysis

 One of the most extensively studied cryptanalytic techniques

- One of the most extensively studied cryptanalytic techniques
- Track probabilistic difference propagation

- One of the most extensively studied cryptanalytic techniques
- Track probabilistic difference propagation
- Differential characteristics and differentials

- One of the most extensively studied cryptanalytic techniques
- Track probabilistic difference propagation
- Differential characteristics and differentials
- Distinguish from random and key recovery

An attacker wants to know

 \blacksquare probability of a differential (δ, Δ) under a secret key k

An attacker wants to know

 \blacksquare probability of a differential (δ, Δ) under a secret key k

An attacker wants to know

- \blacksquare probability of a differential (δ, Δ) under a secret key k
- \blacksquare expected probabilities of a differential (δ, Δ) over all master keys

An attacker wants to know

- \blacksquare probability of a differential (δ, Δ) under a secret key k
- \blacksquare expected probabilities of a differential (δ, Δ) over all master keys

An attacker wants to know

- \blacksquare probability of a differential (δ, Δ) under a secret key k
- \blacksquare expected probabilities of a differential (δ, Δ) over all master keys
- \blacksquare sum on the expected probabilities of all or some characteristics in a differential (δ,Δ) over all random round keys

An attacker wants to know

- \blacksquare probability of a differential (δ, Δ) under a secret key k
- \blacksquare expected probabilities of a differential (δ, Δ) over all master keys
- \blacksquare sum on the expected probabilities of all or some characteristics in a differential (δ,Δ) over all random round keys

Assumptions

- Markov cipher
- Independently random round keys
- Hypothesis of stochastic equivalence

With the assumptions, it allows to

With the assumptions, it allows to

estimate the averaged strength of a distinguisher

With the assumptions, it allows to

- estimate the averaged strength of a distinguisher
- provable resistance against differential cryptanalysis

With the assumptions, it allows to

- estimate the averaged strength of a distinguisher
- provable resistance against differential cryptanalysis
- guideline for designs

With the assumptions, it allows to

- estimate the averaged strength of a distinguisher
- provable resistance against differential cryptanalysis
- guideline for designs

However, an attacker targets on one secret key.

With the assumptions, it allows to

- estimate the averaged strength of a distinguisher
- provable resistance against differential cryptanalysis
- guideline for designs

However, an attacker targets on one secret key.

The probability of a differential distinguisher determines the attack complexity

With the assumptions, it allows to

- estimate the averaged strength of a distinguisher
- provable resistance against differential cryptanalysis
- guideline for designs

However, an attacker targets on one secret key.

- The probability of a differential distinguisher determines the attack complexity
- Differential or impossible differential?

Discrepancy observed in previous works:

ARX ciphers:

- ARX ciphers:
 - Differential cryptanalysis on ARX-based hash functions, see for instance [Leu12]

- ARX ciphers:
 - Differential cryptanalysis on ARX-based hash functions, see for instance [Leu12]
 - ▶ Rotational cryptanalysis [KNP+15]

- ARX ciphers:
 - Differential cryptanalysis on ARX-based hash functions, see for instance [Leu12]
 - ► Rotational cryptanalysis [KNP+15]
- Plateau characteristics [DR07]

- ARX ciphers:
 - Differential cryptanalysis on ARX-based hash functions, see for instance [Leu12]
 - ► Rotational cryptanalysis [KNP+15]
- Plateau characteristics [DR07]
- Refined differential probability with key being zero [CLN+17]

Discrepancy observed in previous works:

- ARX ciphers:
 - Differential cryptanalysis on ARX-based hash functions, see for instance [Leu12]
 - ► Rotational cryptanalysis [KNP+15]
- Plateau characteristics [DR07]
- Refined differential probability with key being zero [CLN+17]
 ...

[Leu12] G. Leurant. Analysis of differential attacks in ARX constructions. ASIACRYPT 2012
 [KNP+15] D. Khovratovich, I. Nikolić, J. Pieprzyk, P. Sokołowski, R. Steinfeld. Rotational cryptanalysis of ARX revisited. FSE 2015
 [DR07] J. Daemen, V. Rijmen. Plateau characteristics. IET information security, 2007

[CLN+17] A. Canteaut, E. Lambooij, S. Neves, S. Rasoolzadeh, Y. Sasaki, M. Stevens. Refined Probability of

Differential Characteristics Including Dependency Between Multiple Rounds. IACR ToSC 2017 (2)

Probability

k	** **	***	*** *	* *		** *	** ** *	*** *
*	* * *	*	* *	*	*** *	*	** ** *	* **
* *:		* *	* *	* *	****	** **	* * *	

Independently random keys

*** ** жk * ** * * ** ** * ** * EDP ** ** * * * *** ** ** * * * * *

Independently random keys

To what extent can we rely on the Assumptions?

Probability

Enumerate characteristics under the Assumptions:

Enumerate characteristics under the Assumptions:

Enumerate characteristics under the Assumptions:

 \blacksquare For a fixed key, # characteristics = 2^{15}

Enumerate characteristics under the Assumptions:

- \blacksquare For a fixed key, # characteristics = 2^{15}
- Under the Assumptions, # characteristics = $2^8 \times 2^7 \times \cdots \times 2^7 = 2^{7r+8}$

Enumerate characteristics under the Assumptions:

- \blacksquare For a fixed key, # characteristics = 2^{15}
- Under the Assumptions, # characteristics = $2^8 \times 2^7 \times \cdots \times 2^7 = 2^{7r+8}$
- A characteristic generated under the Assumptions is "almost" impossible in reality.

To study differential probability in fixed-key block ciphers and permutations It is crucial to ask:

To study differential probability in fixed-key block ciphers and permutations

It is crucial to ask:

• EDP \neq 0 while DP = 0 for all keys?

To study differential probability in fixed-key block ciphers and $\ensuremath{\mathsf{permutations}}$

- EDP \neq 0 while DP = 0 for all keys?
- Differential characteristics enumeration?

To study differential probability in fixed-key block ciphers and $\ensuremath{\mathsf{permutations}}$

- EDP \neq 0 while DP = 0 for all keys?
- Differential characteristics enumeration?
- Characteristics-based attacks?

To study differential probability in fixed-key block ciphers and $\ensuremath{\mathsf{permutations}}$

- EDP \neq 0 while DP = 0 for all keys?
- Differential characteristics enumeration?
- Characteristics-based attacks?
- Compute DP under any given key?

To study differential probability in fixed-key block ciphers and $\ensuremath{\mathsf{permutations}}$

- EDP \neq 0 while DP = 0 for all keys?
- Differential characteristics enumeration?
- Characteristics-based attacks?
- Compute DP under any given key?
- Design better key schedules and/or constants?

Differential probability is dependent on the key

- Differential probability is dependent on the key
- Characteristics with zero or nonzero probability

- Differential probability is dependent on the key
- Characteristics with zero or nonzero probability

Effective keys

A key is effective for a characteristic if the characteristic is of nonzero probability under the key.

- Differential probability is dependent on the key
- Characteristics with zero or nonzero probability

Effective keys

A key is effective for a characteristic if the characteristic is of nonzero probability under the key.

If no effective key exists, it is called a *singular characteristic*.

Effective Keys

SPN cipher with keys XORed after the linear layer

Effective Keys

- SPN cipher with keys XORed after the linear layer
- Right output and right input of the Sboxes

Effective Keys

- SPN cipher with keys XORed after the linear layer
- Right output and right input of the Sboxes
- Effective key candidates: $k = Px \oplus y$

 $\alpha_0 \xrightarrow{S} \beta_0 \xrightarrow{P} \alpha_1 \xrightarrow{S} \beta_1 \xrightarrow{P} \alpha_2 \xrightarrow{S} \beta_2 \xrightarrow{P} \alpha_3 \xrightarrow{S} \beta_3 \xrightarrow{P} \alpha_4$

When the difference propagation is legal, the effective key set of a 2-round characteristic is non-empty.

- When the difference propagation is legal, the effective key set of a 2-round characteristic is non-empty.
- Effective keys derived from two consecutive rounds may not be compatible with the key schedule.

Procedure:

1. Conditions on K_i to be effective

- 1. Conditions on K_i to be effective
- 2. Conditions based on a specific key schedule

- 1. Conditions on K_i to be effective
- 2. Conditions based on a specific key schedule
- 3. Key schedule details

- 1. Conditions on K_i to be effective
- 2. Conditions based on a specific key schedule
- 3. Key schedule details
- 4. Linear equation systems

- 1. Conditions on K_i to be effective
- 2. Conditions based on a specific key schedule
- 3. Key schedule details
- 4. Linear equation systems
 - No solution found \rightarrow singular

- 1. Conditions on K_i to be effective
- 2. Conditions based on a specific key schedule
- 3. Key schedule details
- 4. Linear equation systems
 - $\blacktriangleright \ \ No \ \ solution \ found \ \ \rightarrow \ singular$
 - \blacktriangleright Key candidates found \rightarrow Further filter by nonlinear constraints

Find singular characteristics in AES-128:

Picture credit: TikZ for Cryptographers

Find singular characteristics in AES-128:

Subspaces of effective keys in every two consecutive rounds

Picture credit: TikZ for Cryptographers

Find singular characteristics in AES-128:

- Subspaces of effective keys in every two consecutive rounds
- Build equation systems with key schedule

Picture credit: TikZ for Cryptographers

Find singular characteristics in AES-128:

- Subspaces of effective keys in every two consecutive rounds
- Build equation systems with key schedule
- 3 out of 4 columns in AES-128 key schedule are linear relations

Picture credit: TikZ for Cryptographers

Find singular characteristics in AES-128:

- Subspaces of effective keys in every two consecutive rounds
- Build equation systems with key schedule
- 3 out of 4 columns in AES-128 key schedule are linear relations
- Simplify and solve the equation system

Picture credit: TikZ for Cryptographers

Examples of 5-round singular characteristics can be found in the AES-128.

Examples of 5-round singular characteristics can be found in the AES-128.

MITM attack

Density of singular characteristics:

Enumerate all characteristics given a 3-round differential

- Enumerate all characteristics given a 3-round differential
- More than 98.47% of all the characteristics are singular

- Enumerate all characteristics given a 3-round differential
- More than 98.47% of all the characteristics are singular
- For the remaining characteristics, we consider the nonlinear constraints from the key schedule and get their effective keys

- Enumerate all characteristics given a 3-round differential
- More than 98.47% of all the characteristics are singular
- For the remaining characteristics, we consider the nonlinear constraints from the key schedule and get their effective keys
 - some of them may also be singular
 - the number of effective keys is around 2^7 to 2^{10}

Different key schedules affect the singularity of a characteristic

- Different key schedules affect the singularity of a characteristic
 - Encrypt a pair of plaintexts under some key with AES-128, track the characteristic

Different key schedules affect the singularity of a characteristic

- Encrypt a pair of plaintexts under some key with AES-128, track the characteristic
- Change the key schedule into AES-192

Different key schedules affect the singularity of a characteristic

- Encrypt a pair of plaintexts under some key with AES-128, track the characteristic
- Change the key schedule into AES-192
- A valid characteristic in AES-128 is highly probable to be singular in AES-192

Different key schedules affect the singularity of a characteristic

- Encrypt a pair of plaintexts under some key with AES-128, track the characteristic
- Change the key schedule into AES-192
- A valid characteristic in AES-128 is highly probable to be singular in AES-192

Differential enumeration + key schedule constraints

Different key schedules affect the singularity of a characteristic

- Encrypt a pair of plaintexts under some key with AES-128, track the characteristic
- Change the key schedule into AES-192
- A valid characteristic in AES-128 is highly probable to be singular in AES-192
- Differential enumeration + key schedule constraints
- Extension to AES-like, Feistel-SP, Feistel

Singular Characteristics in Prince

Singular Characteristics in Prince

$$\begin{pmatrix} 80\,4\,0\\ 0\,0\,0\,0\\ 4\,0\,8\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 8\,0\,4\,0\\ 0\,0\,0\,0\\ 8\,0\,4\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{M'} \begin{pmatrix} 8\,0\,4\,0\\ 0\,0\,0\,0\\ 8\,0\,4\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{SR} \begin{pmatrix} 8\,0\,4\,0\\ 0\,0\,0\,0\\ 4\,0\,8\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 8\,0\,5\,0\\ 0\,0\,0\,0\\ 8\,0\,5\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,5\,0\\ 0\,0\,0\,0\\ 2\,0\,5\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,5\,0\\ 0\,0\,0\,0\\ 2\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,5\,0\\ 0\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,5\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,5\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\,0\\ 2\,0\,0\,0\\ 2\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\,0$$

Singular Characteristics in Prince

$$\begin{pmatrix} 80\,4\,0\\ 0\,0\,0\,0\\ 4\,0\,8\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 8\,0\,4\,0\\ 0\,0\,0\,0\\ 8\,0\,4\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{M'} \begin{pmatrix} 8\,0\,4\,0\\ 0\,0\,0\,0\\ 8\,0\,4\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{SR} \begin{pmatrix} 8\,0\,4\,0\\ 0\,0\,0\,0\\ 4\,0\,8\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 8\,0\,5\,0\\ 0\,0\,0\,0\\ 8\,0\,5\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{SR} \begin{pmatrix} 8\,0\,5\,0\\ 0\,0\,0\,0\\ 8\,0\,5\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,5\,0\\ 0\,0\,0\,0\\ 2\,0\,5\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,5\,0\\ 0\,0\,0\,0\\ 2\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,5\,0\\ 0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,5\,0\\ 0\,0\,0\,0\\ 0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,5\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,5\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,5\,0\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\,0\\ 0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\,0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\,0\,0\,0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 2\,0\,0\,0\,0\,0\,0\,0\,0 \end{pmatrix} \xrightarrow{S}$$

A 3-round singular characteristic with $EDP = 2^{-35}$

If no effective key in common \rightarrow *singular cluster*.

If no effective key in common \rightarrow *singular cluster*. Differentials/truncated differentials/multiple differentials

Observation: If a differential contains only singular characteristics, it is an impossible differential.

 Provable security against impossible differential on structures [SLG+16]

- Provable security against impossible differential on structures [SLG+16]
- Focus on the Sbox and the key schedule

- Provable security against impossible differential on structures [SLG+16]
- Focus on the Sbox and the key schedule
- Impossible differential by singular characteristics

- Provable security against impossible differential on structures [SLG+16]
- Focus on the Sbox and the key schedule
- Impossible differential by singular characteristics
- An impossible differential is found in a toy cipher

- Provable security against impossible differential on structures [SLG+16]
- Focus on the Sbox and the key schedule
- Impossible differential by singular characteristics
- An impossible differential is found in a toy cipher
- Improve distinguishers?

Consider a 5-round differential \mathcal{D} of the AES with active pattern 1-4-16-4-1. The effective keys of each characteristic can be precomputed.

By assuming the knowledge on the effective keys of the differential:

Consider a 5-round differential \mathcal{D} of the AES with active pattern 1-4-16-4-1. The effective keys of each characteristic can be precomputed.

By assuming the knowledge on the effective keys of the differential:

 $\ \ \, \Omega_{\mathcal D}=\emptyset \rightarrow {\rm singular}$

Consider a 5-round differential \mathcal{D} of the AES with active pattern 1-4-16-4-1. The effective keys of each characteristic can be precomputed.

By assuming the knowledge on the effective keys of the differential:

•
$$\Omega_{\mathcal{D}} = \emptyset \rightarrow \text{singular}$$

• $|\Omega_{\mathcal{D}}| \neq \emptyset$

Consider a 5-round differential \mathcal{D} of the AES with active pattern 1-4-16-4-1. The effective keys of each characteristic can be precomputed.

By assuming the knowledge on the effective keys of the differential:

$$\ \ \, \Omega_{\mathcal{D}}=\emptyset \rightarrow \mathsf{singular}$$

 $|\Omega_{\mathcal{D}}| \neq \emptyset$

Information leaked about the secret key

Consider a 5-round differential \mathcal{D} of the AES with active pattern 1-4-16-4-1. The effective keys of each characteristic can be precomputed.

By assuming the knowledge on the effective keys of the differential:

- $\ \ \, \Omega_{\mathcal D}=\emptyset \rightarrow {\rm singular}$
- $|\Omega_{\mathcal{D}}| \neq \emptyset$
 - Information leaked about the secret key
 - The total number of characteristics is around 2^{70} , $|\Omega_D| < 2^{128}$

Consider a 5-round differential \mathcal{D} of the AES with active pattern 1-4-16-4-1. The effective keys of each characteristic can be precomputed.

By assuming the knowledge on the effective keys of the differential:

- $\ \ \, \Omega_{\mathcal D}=\emptyset \rightarrow {\rm singular}$
- $|\Omega_{\mathcal{D}}| \neq \emptyset$
 - Information leaked about the secret key
 - The total number of characteristics is around 2^{70} , $|\Omega_D| < 2^{128}$
 - Exhaustive search space reduced?

 Differential cryptanalysis in fixed-key block ciphers and permutations

- Differential cryptanalysis in fixed-key block ciphers and permutations
- Effective keys and singular characteristics are proposed based on fixed-key DP

- Differential cryptanalysis in fixed-key block ciphers and permutations
- Effective keys and singular characteristics are proposed based on fixed-key DP
- Concrete examples are found for AES-like ciphers with efficient algorithms

- Differential cryptanalysis in fixed-key block ciphers and permutations
- Effective keys and singular characteristics are proposed based on fixed-key DP
- Concrete examples are found for AES-like ciphers with efficient algorithms
- Pay extra attention to characteristics generated from enumeration techniques when they are applied in attacks

- Differential cryptanalysis in fixed-key block ciphers and permutations
- Effective keys and singular characteristics are proposed based on fixed-key DP
- Concrete examples are found for AES-like ciphers with efficient algorithms
- Pay extra attention to characteristics generated from enumeration techniques when they are applied in attacks
- New approach towards improved distinguisher or key recovery technique

- Differential cryptanalysis in fixed-key block ciphers and permutations
- Effective keys and singular characteristics are proposed based on fixed-key DP
- Concrete examples are found for AES-like ciphers with efficient algorithms
- Pay extra attention to characteristics generated from enumeration techniques when they are applied in attacks
- New approach towards improved distinguisher or key recovery technique

Thank you for your attention!