The Phantom of Differential Characteristics

Yunwen Liu
joint work with Bing Sun, Guoqiang Liu, Chao Li and Shaojing Fu

ESAT/COSIC, KU Leuven, and imec, Belgium
National University of Defense Technology, China

ASK, December 2017

Motivation

Motivation

DISTINGUISHER +

Motivation

Distinguisher $+\quad$ Attack

Motivation

Distinguisher $+\quad$ Attack

For various application scenarios, we often assume the ability of an attacker to control the keys:

Motivation

Distinguisher $+\quad$ Attack

For various application scenarios, we often assume the ability of an attacker to control the keys:

- Single-key model

Motivation

Distinguisher $+\quad$ Attack

For various application scenarios, we often assume the ability of an attacker to control the keys:

- Single-key model
- Open-key model

Motivation

Distinguisher $+\quad$ Attack

For various application scenarios, we often assume the ability of an attacker to control the keys:

- Single-key model
- Open-key model
- related-key attack
- weak-key attack
- known-key attack

Motivation

Differential cryptanalysis

Motivation

Differential cryptanalysis
■ One of the most extensively studied cryptanalytic techniques

Motivation

Differential cryptanalysis
■ One of the most extensively studied cryptanalytic techniques

- Track probabilistic difference propagation

Motivation

Differential cryptanalysis
■ One of the most extensively studied cryptanalytic techniques

- Track probabilistic difference propagation
■ Differential characteristics and differentials

Motivation

Differential cryptanalysis
■ One of the most extensively studied cryptanalytic techniques
■ Track probabilistic difference propagation
■ Differential characteristics and differentials

■ Distinguish from random and key
 recovery

Motivation

An attacker wants to know

- probability of a differential (δ, Δ) under a secret key k

Motivation

An attacker wants to know
■ probability of a differential (δ, Δ) under a secret key k

Motivation

An attacker wants to know

- probability of a differential (δ, Δ) under a secret key k

■ expected probabilities of a differential (δ, Δ) over all master keys

Motivation

An attacker wants to know
■ probability of a differential (δ, Δ) under a secret key k
■ expected probabilities of a differential (δ, Δ) over all master keys

Motivation

An attacker wants to know
■ probability of a differential (δ, Δ) under a secret key k

- expected probabilities of a differential (δ, Δ) over all master keys
- sum on the expected probabilities of all or some characteristics in a differential (δ, Δ) over all random round keys

Motivation

An attacker wants to know
■ probability of a differential (δ, Δ) under a secret key k
■ expected probabilities of a differential (δ, Δ) over all master keys

- sum on the expected probabilities of all or some characteristics in a differential (δ, Δ) over all random round keys

Assumptions

- Markov cipher
- Independently random round keys

■ Hypothesis of stochastic equivalence

Motivation

With the assumptions, it allows to

Motivation

With the assumptions, it allows to
■ estimate the averaged strength of a distinguisher

Motivation

With the assumptions, it allows to

- estimate the averaged strength of a distinguisher
- provable resistance against differential cryptanalysis

Motivation

With the assumptions, it allows to

- estimate the averaged strength of a distinguisher
- provable resistance against differential cryptanalysis
- guideline for designs

Motivation

With the assumptions, it allows to

- estimate the averaged strength of a distinguisher
- provable resistance against differential cryptanalysis
- guideline for designs

However, an attacker targets on one secret key.

Motivation

With the assumptions, it allows to
■ estimate the averaged strength of a distinguisher

- provable resistance against differential cryptanalysis
- guideline for designs

However, an attacker targets on one secret key.
■ The probability of a differential distinguisher determines the attack complexity

Motivation

With the assumptions, it allows to
■ estimate the averaged strength of a distinguisher

- provable resistance against differential cryptanalysis
- guideline for designs

However, an attacker targets on one secret key.
■ The probability of a differential distinguisher determines the attack complexity
■ Differential or impossible differential?

Motivation

Discrepancy observed in previous works:

Motivation

Discrepancy observed in previous works:

- ARX ciphers:

Motivation

Discrepancy observed in previous works:

- ARX ciphers:
- Differential cryptanalysis on ARX-based hash functions, see for instance [Leu12]

Motivation

Discrepancy observed in previous works:

- ARX ciphers:
- Differential cryptanalysis on ARX-based hash functions, see for instance [Leu12]
- Rotational cryptanalysis [KNP+15]

Motivation

Discrepancy observed in previous works:

- ARX ciphers:
- Differential cryptanalysis on ARX-based hash functions, see for instance [Leu12]
- Rotational cryptanalysis [KNP+15]

■ Plateau characteristics [DR07]

Motivation

Discrepancy observed in previous works:

- ARX ciphers:
- Differential cryptanalysis on ARX-based hash functions, see for instance [Leu12]
- Rotational cryptanalysis [KNP+15]
- Plateau characteristics [DR07]
- Refined differential probability with key being zero [CLN+17]

Motivation

Discrepancy observed in previous works:

- ARX ciphers:
- Differential cryptanalysis on ARX-based hash functions, see for instance [Leu12]
- Rotational cryptanalysis [KNP+15]

■ Plateau characteristics [DR07]
■ Refined differential probability with key being zero [CLN+17]
[Leu12] G. Leurant. Analysis of differential attacks in ARX constructions. ASIACRYPT 2012
[KNP+15] D. Khovratovich, I. Nikolić, J. Pieprzyk, P. Sokołowski, R. Steinfeld. Rotational cryptanalysis of ARX revisited. FSE 2015
[DR07] J. Daemen, V. Rijmen. Plateau characteristics. IET information security, 2007
[CLN+17] A. Canteaut, E. Lambooij, S. Neves, S. Rasoolzadeh, Y. Sasaki, M. Stevens. Refined Probability of
Differential Characteristics Including Dependency Between Multiple Rounds. IACR ToSC 2017 (2)

Motivation

Independently random keys

Motivation

To what extent can we rely on the Assumptions?

Motivation

Enumerate characteristics under the Assumptions:

Motivation

Enumerate characteristics under the Assumptions:

Motivation

Enumerate characteristics under the Assumptions:

■ For a fixed key, \# characteristics $=2^{15}$

Motivation

Enumerate characteristics under the Assumptions:

- For a fixed key, \# characteristics $=2^{15}$

■ Under the Assumptions, \# characteristics = $2^{8} \times 2^{7} \times \cdots \times 2^{7}=2^{7 r+8}$

Motivation

Enumerate characteristics under the Assumptions:

- For a fixed key, \# characteristics $=2^{15}$

■ Under the Assumptions, \# characteristics = $2^{8} \times 2^{7} \times \cdots \times 2^{7}=2^{7 r+8}$

- A characteristic generated under the Assumptions is "almost" impossible in reality.

Motivation

To study differential probability in fixed-key block ciphers and permutations
It is crucial to ask:

Motivation

To study differential probability in fixed-key block ciphers and permutations
It is crucial to ask:

- EDP $\neq 0$ while $\mathrm{DP}=0$ for all keys?

Motivation

To study differential probability in fixed-key block ciphers and permutations
It is crucial to ask:

- EDP $\neq 0$ while DP $=0$ for all keys?

■ Differential characteristics enumeration?

Motivation

To study differential probability in fixed-key block ciphers and permutations
It is crucial to ask:

- EDP $\neq 0$ while DP $=0$ for all keys?

■ Differential characteristics enumeration?
■ Characteristics-based attacks?

Motivation

To study differential probability in fixed-key block ciphers and permutations
It is crucial to ask:

- EDP $\neq 0$ while DP $=0$ for all keys?

■ Differential characteristics enumeration?

- Characteristics-based attacks?

■ Compute DP under any given key?

Motivation

To study differential probability in fixed-key block ciphers and permutations
It is crucial to ask:

- EDP $\neq 0$ while DP $=0$ for all keys?

■ Differential characteristics enumeration?

- Characteristics-based attacks?

■ Compute DP under any given key?
■ Design better key schedules and/or constants?

Effective Keys and Singular Characteristics

Effective Keys and Singular Characteristics

■ Differential probability is dependent on the key

Effective Keys and Singular Characteristics

- Differential probability is dependent on the key

■ Characteristics with zero or nonzero probability

Effective Keys and Singular Characteristics

■ Differential probability is dependent on the key
■ Characteristics with zero or nonzero probability

Effective keys

A key is effective for a characteristic if the characteristic is of nonzero probability under the key.

Effective Keys and Singular Characteristics

■ Differential probability is dependent on the key
■ Characteristics with zero or nonzero probability

Effective keys

A key is effective for a characteristic if the characteristic is of nonzero probability under the key.

If no effective key exists, it is called a singular characteristic.

Effective Keys

■ SPN cipher with keys XORed after the linear layer

Effective Keys

■ SPN cipher with keys XORed after the linear layer
■ Right output and right input of the Sboxes

Effective Keys

■ SPN cipher with keys XORed after the linear layer
■ Right output and right input of the Sboxes
■ Effective key candidates: $k=P x \oplus y$

Singular Characteristics

$$
\alpha_{0} \xrightarrow{S} \beta_{0} \xrightarrow{P} \alpha_{1} \xrightarrow{S} \beta_{1} \xrightarrow{P} \alpha_{2} \xrightarrow{S} \beta_{2} \xrightarrow{P} \alpha_{3} \xrightarrow{S} \beta_{3} \xrightarrow{P} \alpha_{4}
$$

Singular Characteristics

$$
\alpha_{0} \xrightarrow{S} \beta_{0} \xrightarrow{P} \alpha_{1} \xrightarrow{S} \beta_{1} \xrightarrow{P} \alpha_{2} \xrightarrow{S} \beta_{2} \xrightarrow{P} \alpha_{3} \xrightarrow{S} \beta_{3} \xrightarrow{P} \alpha_{4}
$$

Singular Characteristics

$$
\alpha_{0} \xrightarrow{S} \beta_{0} \xrightarrow{P} \alpha_{1} \xrightarrow{S} \beta_{1} \xrightarrow{P} \alpha_{2} \xrightarrow{S} \beta_{2} \xrightarrow{P} \alpha_{3} \xrightarrow{S} \beta_{3} \xrightarrow{P} \alpha_{4}
$$

Singular Characteristics

Singular Characteristics

■ When the difference propagation is legal, the effective key set of a 2-round characteristic is non-empty.

Singular Characteristics

■ When the difference propagation is legal, the effective key set of a 2-round characteristic is non-empty.

- Effective keys derived from two consecutive rounds may not be compatible with the key schedule.

Singular Characteristics

Procedure:

Singular Characteristics

Procedure:

1. Conditions on K_{i} to be effective

Singular Characteristics

Procedure:

1. Conditions on K_{i} to be effective
2. Conditions based on a specific key schedule

Singular Characteristics

Procedure:

1. Conditions on K_{i} to be effective
2. Conditions based on a specific key schedule
3. Key schedule details

Singular Characteristics

Procedure:

1. Conditions on K_{i} to be effective
2. Conditions based on a specific key schedule
3. Key schedule details
4. Linear equation systems

Singular Characteristics

Procedure:

1. Conditions on K_{i} to be effective
2. Conditions based on a specific key schedule
3. Key schedule details
4. Linear equation systems

- No solution found \rightarrow singular

Singular Characteristics

Procedure:

1. Conditions on K_{i} to be effective
2. Conditions based on a specific key schedule
3. Key schedule details
4. Linear equation systems

- No solution found \rightarrow singular
- Key candidates found \rightarrow Further filter by nonlinear constraints

Singular Characteristics in the AES

Find singular characteristics in AES-128:

Picture credit:
TikZ for Cryptographers

Singular Characteristics in the AES

Find singular characteristics in AES-128:
■ Subspaces of effective keys in every two consecutive rounds

Picture credit:
TikZ for Cryptographers

Singular Characteristics in the AES

Find singular characteristics in AES-128:
■ Subspaces of effective keys in every two consecutive rounds

- Build equation systems with key schedule

Picture credit:
TikZ for Cryptographers

Singular Characteristics in the AES

Find singular characteristics in AES-128:
■ Subspaces of effective keys in every two consecutive rounds

- Build equation systems with key schedule

■ 3 out of 4 columns in AES-128 key schedule are linear relations

Picture credit:
TikZ for Cryptographers

Singular Characteristics in the AES

Find singular characteristics in AES-128:
■ Subspaces of effective keys in every two consecutive rounds

- Build equation systems with key schedule

■ 3 out of 4 columns in AES-128 key schedule are linear relations

- Simplify and solve the equation system

Picture credit:
TikZ for Cryptographers

Singular Characteristics in the AES

Examples of 5-round singular characteristics can be found in the AES-128.

$$
\begin{aligned}
&\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow[\rightarrow]{S}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow[\rightarrow]{P}\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
3 & 0 & 0 & 0
\end{array}\right) \xrightarrow[\rightarrow]{S}\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow{P}\left(\begin{array}{llll}
6 & 2 & 1 & 3 \\
3 & 2 & 3 & 2 \\
3 & 6 & 2 & 1 \\
5 & 4 & 1 & 1
\end{array}\right) \xrightarrow[\rightarrow]{S}\left(\begin{array}{llll}
24 & 27 & 39 & 9 \mathrm{~d} \\
45 & 36 & 36 & 27 \\
36 & \mathrm{f} 1 & 2 \mathrm{e} & 2 \mathrm{~d} \\
39 & 2 \mathrm{~d} & 1 \mathrm{f} & 3 \mathrm{a}
\end{array}\right) \\
& \xrightarrow{P}\left(\begin{array}{llll}
6 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 36
\end{array}\right) \\
& \xrightarrow{S}\left(\begin{array}{llll}
\mathrm{e} & 0 & 0 & 0 \\
0 & 9 & 0 & 0 \\
0 & 0 & \mathrm{~d} & 0 \\
0 & 0 & 0 & \mathrm{~b}
\end{array}\right) \xrightarrow{P}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Singular Characteristics in the AES

Examples of 5-round singular characteristics can be found in the AES-128.

$$
\begin{aligned}
& \left(\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S}\left(\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{P}\left(\begin{array}{cccc}
* & 0 & 0 & 0 \\
* & 0 & 0 & 0 \\
* & 0 & 0 & 0 \\
* & 0 & 0 & 0
\end{array}\right) \xrightarrow{S}\left(\begin{array}{llll}
* & 0 & 0 & 0 \\
* & 0 & 0 & 0 \\
* & 0 & 0 & 0 \\
* & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow{P}\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right) \xrightarrow{S}\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right) \xrightarrow{P}\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right) \\
& \xrightarrow{S}\left(\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & * & 0 \\
0 & 0 & 0 & *
\end{array}\right) \xrightarrow{P}\left(\begin{array}{cccc}
* & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S}\left(\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

MITM attack

Singular Characteristics in the AES

Density of singular characteristics:

Singular Characteristics in the AES

Density of singular characteristics:

Singular Characteristics in the AES

Density of singular characteristics:

- Enumerate all characteristics given a 3-round differential

Singular Characteristics in the AES

Density of singular characteristics:

- Enumerate all characteristics given a 3 -round differential
- More than 98.47% of all the characteristics are singular

Singular Characteristics in the AES

Density of singular characteristics:

- Enumerate all characteristics given a 3-round differential
- More than 98.47% of all the characteristics are singular
- For the remaining characteristics, we consider the nonlinear constraints from the key schedule and get their effective keys

Singular Characteristics in the AES

Density of singular characteristics:

- Enumerate all characteristics given a 3-round differential
- More than 98.47% of all the characteristics are singular
- For the remaining characteristics, we consider the nonlinear constraints from the key schedule and get their effective keys
- some of them may also be singular
- the number of effective keys is around 2^{7} to 2^{10}

Singular Characteristics in the AES

■ Different key schedules affect the singularity of a characteristic

Singular Characteristics in the AES

■ Different key schedules affect the singularity of a characteristic

- Encrypt a pair of plaintexts under some key with AES-128, track the characteristic

Singular Characteristics in the AES

■ Different key schedules affect the singularity of a characteristic

- Encrypt a pair of plaintexts under some key with AES-128, track the characteristic
- Change the key schedule into AES-192

Singular Characteristics in the AES

■ Different key schedules affect the singularity of a characteristic

- Encrypt a pair of plaintexts under some key with AES-128, track the characteristic
- Change the key schedule into AES-192
- A valid characteristic in AES-128 is highly probable to be singular in AES-192

Singular Characteristics in the AES

■ Different key schedules affect the singularity of a characteristic

- Encrypt a pair of plaintexts under some key with AES-128, track the characteristic
- Change the key schedule into AES-192
- A valid characteristic in AES-128 is highly probable to be singular in AES-192

■ Differential enumeration + key schedule constraints

Singular Characteristics in the AES

■ Different key schedules affect the singularity of a characteristic

- Encrypt a pair of plaintexts under some key with AES-128, track the characteristic
- Change the key schedule into AES-192
- A valid characteristic in AES-128 is highly probable to be singular in AES-192

■ Differential enumeration + key schedule constraints
■ Extension to AES-like, Feistel-SP, Feistel

Singular Characteristics in Prince

Singular Characteristics in Prince

$$
\begin{aligned}
& \left(\begin{array}{llll}
8 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 \\
4 & 0 & 8 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S}\left(\begin{array}{llll}
8 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 \\
8 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{M^{\prime}}\left(\begin{array}{lllll}
8 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 \\
8 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S R}\left(\begin{array}{lllll}
8 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 \\
4 & 0 & 8 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S}\left(\begin{array}{lllll}
8 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 \\
8 & 0 & 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow[\rightarrow]{M^{\prime}}\left(\begin{array}{llll}
8 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 \\
8 & 0 & 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S R}\left(\begin{array}{lllll}
8 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 \\
5 & 0 & 8 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S}\left(\begin{array}{lllll}
2 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 \\
2 & 0 & 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Singular Characteristics in Prince

$$
\begin{aligned}
& \left(\begin{array}{llll}
8 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 \\
4 & 0 & 8 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S}\left(\begin{array}{llll}
8 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 \\
8 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{M^{\prime}}\left(\begin{array}{lllll}
8 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
8 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S R}\left(\begin{array}{lllll}
8 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 \\
4 & 0 & 8 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S}\left(\begin{array}{lllll}
8 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 \\
8 & 0 & 5 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow[\rightarrow]{M^{\prime}}\left(\begin{array}{llll}
8 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 \\
8 & 0 & 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S R}\left(\begin{array}{lllll}
8 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 \\
5 & 0 & 8 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{S}\left(\begin{array}{lllll}
2 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 \\
2 & 0 & 5 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

A 3-round singular characteristic with EDP $=2^{-35}$

Singular Cluster

Singular Cluster

$$
\begin{aligned}
& \alpha_{0} \xrightarrow{S} \beta_{0} \xrightarrow{P} \alpha_{1} \xrightarrow{S} \beta_{1} \xrightarrow{P} \alpha_{2} \xrightarrow{S} \beta_{2} \xrightarrow{P} \alpha_{3} \xrightarrow{S} \beta_{3} \xrightarrow{P} \alpha_{4}
\end{aligned}
$$

Singular Cluster

If no effective key in common \rightarrow singular cluster.

Singular Cluster

If no effective key in common \rightarrow singular cluster.
Differentials/truncated differentials/multiple differentials

Further Applications

Observation: If a differential contains only singular characteristics, it is an impossible differential.

Further Applications

Observation: If a differential contains only singular characteristics, it is an impossible differential.

■ Provable security against impossible differential on structures [SLG+16]

Further Applications

Observation: If a differential contains only singular characteristics, it is an impossible differential.

■ Provable security against impossible differential on structures [SLG+16]

- Focus on the Sbox and the key schedule

Further Applications

Observation: If a differential contains only singular characteristics, it is an impossible differential.

■ Provable security against impossible differential on structures [SLG+16]

- Focus on the Sbox and the key schedule

■ Impossible differential by singular characteristics

Further Applications

Observation: If a differential contains only singular characteristics, it is an impossible differential.

■ Provable security against impossible differential on structures [SLG+16]

- Focus on the Sbox and the key schedule
- Impossible differential by singular characteristics
- An impossible differential is found in a toy cipher

Further Applications

Observation: If a differential contains only singular characteristics, it is an impossible differential.

■ Provable security against impossible differential on structures [SLG+16]

- Focus on the Sbox and the key schedule
- Impossible differential by singular characteristics
- An impossible differential is found in a toy cipher

■ Improve distinguishers?

Further Applications

Consider a 5 -round differential \mathcal{D} of the AES with active pattern $1-4-16-4-1$. The effective keys of each characteristic can be precomputed.
By assuming the knowledge on the effective keys of the differential:

Further Applications

Consider a 5 -round differential \mathcal{D} of the AES with active pattern $1-4-16-4-1$. The effective keys of each characteristic can be precomputed.
By assuming the knowledge on the effective keys of the differential:
$■ \Omega_{\mathcal{D}}=\emptyset \rightarrow$ singular

Further Applications

Consider a 5 -round differential \mathcal{D} of the AES with active pattern $1-4-16-4-1$. The effective keys of each characteristic can be precomputed.
By assuming the knowledge on the effective keys of the differential:
$■ \Omega_{\mathcal{D}}=\emptyset \rightarrow$ singular

- $\left|\Omega_{\mathcal{D}}\right| \neq \emptyset$

Further Applications

Consider a 5 -round differential \mathcal{D} of the AES with active pattern $1-4-16-4-1$. The effective keys of each characteristic can be precomputed.
By assuming the knowledge on the effective keys of the differential:
$■ \Omega_{\mathcal{D}}=\emptyset \rightarrow$ singular

- $\left|\Omega_{\mathcal{D}}\right| \neq \emptyset$
- Information leaked about the secret key

Further Applications

Consider a 5 -round differential \mathcal{D} of the AES with active pattern $1-4-16-4-1$. The effective keys of each characteristic can be precomputed.
By assuming the knowledge on the effective keys of the differential:

■ $\Omega_{\mathcal{D}}=\emptyset \rightarrow$ singular

- $\left|\Omega_{\mathcal{D}}\right| \neq \emptyset$
- Information leaked about the secret key
- The total number of characteristics is around $2^{70},\left|\Omega_{\mathcal{D}}\right|<2^{128}$

Further Applications

Consider a 5 -round differential \mathcal{D} of the AES with active pattern $1-4-16-4-1$. The effective keys of each characteristic can be precomputed.
By assuming the knowledge on the effective keys of the differential:

■ $\Omega_{\mathcal{D}}=\emptyset \rightarrow$ singular

- $\left|\Omega_{\mathcal{D}}\right| \neq \emptyset$
- Information leaked about the secret key
- The total number of characteristics is around $2^{70},\left|\Omega_{\mathcal{D}}\right|<2^{128}$
- Exhaustive search space reduced?

Summary

■ Differential cryptanalysis in fixed-key block ciphers and permutations

Summary

■ Differential cryptanalysis in fixed-key block ciphers and permutations

■ Effective keys and singular characteristics are proposed based on fixed-key DP

Summary

■ Differential cryptanalysis in fixed-key block ciphers and permutations
■ Effective keys and singular characteristics are proposed based on fixed-key DP

- Concrete examples are found for AES-like ciphers with efficient algorithms

Summary

■ Differential cryptanalysis in fixed-key block ciphers and permutations

■ Effective keys and singular characteristics are proposed based on fixed-key DP

- Concrete examples are found for AES-like ciphers with efficient algorithms
■ Pay extra attention to characteristics generated from enumeration techniques when they are applied in attacks

Summary

■ Differential cryptanalysis in fixed-key block ciphers and permutations
■ Effective keys and singular characteristics are proposed based on fixed-key DP

- Concrete examples are found for AES-like ciphers with efficient algorithms
- Pay extra attention to characteristics generated from enumeration techniques when they are applied in attacks
■ New approach towards improved distinguisher or key recovery technique

Summary

■ Differential cryptanalysis in fixed-key block ciphers and permutations
■ Effective keys and singular characteristics are proposed based on fixed-key DP

- Concrete examples are found for AES-like ciphers with efficient algorithms
- Pay extra attention to characteristics generated from enumeration techniques when they are applied in attacks
■ New approach towards improved distinguisher or key recovery technique

Thank you for your attention!

